Abstract

Abstract Machine learning‐based behaviour classification using acceleration data is a powerful tool in bio‐logging research. Deep learning architectures such as convolutional neural networks (CNN), long short‐term memory (LSTM) and self‐attention mechanism as well as related training techniques have been extensively studied in human activity recognition. However, they have rarely been used in wild animal studies. The main challenges of acceleration‐based wild animal behaviour classification include data shortages, class imbalance problems, various types of noise in data due to differences in individual behaviour and where the loggers were attached and complexity in data due to complex animal‐specific behaviours, which may have limited the application of deep learning techniques in this area. To overcome these challenges, we explored the effectiveness of techniques for efficient model training: data augmentation, manifold mixup and pre‐training of deep learning models with unlabelled data, using datasets from two species of wild seabirds and state‐of‐the‐art deep learning model architectures. Data augmentation improved the overall model performance when one of the various techniques (none, scaling, jittering, permutation, time‐warping and rotation) was randomly applied to each data during mini‐batch training. Manifold mixup also improved model performance, but not as much as random data augmentation. Pre‐training with unlabelled data did not improve model performance. The state‐of‐the‐art deep learning models, including a model consisting of four CNN layers, an LSTM layer and a multi‐head attention layer, as well as its modified version with shortcut connection, showed better performance among other comparative models. Using only raw acceleration data as inputs, these models outperformed classic machine learning approaches that used 119 handcrafted features. Our experiments showed that deep learning techniques are promising for acceleration‐based behaviour classification of wild animals and highlighted some challenges (e.g. effective use of unlabelled data). There is scope for greater exploration of deep learning techniques in wild animal studies (e.g. advanced data augmentation, multimodal sensor data use, transfer learning and self‐supervised learning). We hope that this study will stimulate the development of deep learning techniques for wild animal behaviour classification using time‐series sensor data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.