Abstract
The ghost imaging technique allows us to recover information about an object in conditions of noisy transmission channels, commensurate with the intensity of the speckle structures involved in the reconstruction. One of the main disadvantages of this technique is relatively slow reconstruction speed. This limits its applicability for study of dynamic processes or fast-moving objects. In this paper, we propose a modification of the computational ghost imaging technique that allows us to overcome this limitation. It is shown that the spectral multiplexing of the speckle patterns speeds up the image reconstruction. Increase in the number of spectral channels from 4 to 10 leads to the increase of the signal-tonoise ratio by the factor of 6. Simultaneously, under the same conditions and with the same number of measurements classical monochrome ghost imaging does not reconstruct the picture at all. This makes the proposed technique attractive for high-speed demanding applications such as communications and remote sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scientific and Technical Journal of Information Technologies, Mechanics and Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.