Abstract
Summarizing the causation of aviation accidents is conducive to enhancing aviation safety. The knowledge graph of aviation accident causation, constructed based on aviation accident reports, can assist in analyzing the causes of aviation accidents. With the continuous development of artificial intelligence technology, leveraging large language models for information extraction and knowledge graph construction has demonstrated significant advantages. This paper proposes an information extraction method for aviation accident causation based on Claude-prompt, which relies on the large-scale pre-trained language model Claude 3.5. Through prompt engineering, combined with a few-shot learning strategy and a self-judgment mechanism, this method achieves automatic extraction of accident-cause entities and their relationships. Experimental results indicate that this approach effectively improves the accuracy of information extraction, overcoming the limitations of traditional methods in terms of accuracy and efficiency in processing complex texts. It provides strong support for subsequently constructing a structured knowledge graph of aviation accident causation and conducting causation analysis of aviation accidents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.