Abstract

Using elementary information-theoretic tools, we develop a novel technique for linear transformation from the space of observations into a low-dimensional (feature) subspace for the purpose of classification. The technique is based on a numerical optimization of an information-theoretic objective function, which can be computed analytically. The advantages of the proposed method over several other techniques are discussed and the conditions under which the method reduces to linear discriminant analysis are given. We show that the novel objective function enjoys many of the properties of the mutual information and the Bayes error and we give sufficient conditions for the method to be Bayes-optimal. Since the objective function is maximized numerically, we show how the calculations can be accelerated to yield feasible solutions. The performance of the method compares favorably to other linear discriminant-based feature extraction methods on a number of simulated and real-world data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.