Abstract

We consider linear programming approaches for support vector machines (SVM). The linear programming problems are introduced as an approximation of the quadratic programming problems commonly used in SVM. When we consider the kernel based nonlinear discriminators, the approximation can be viewed as kernel principle component analysis which generates an important subspace from the feature space characterized the kernel function. We show that any data points nonlinearly, and implicitly, projected into the feature space by kernel functions can be approximately expressed as points lying a low dimensional Euclidean space explicitly, which enables us to develop linear programming formulations for nonlinear discriminators. We also introduce linear programming formulations for multicategory classification problems. We show that the same maximal margin principle exploited in SVM can be involved into the linear programming formulations. Moreover, considering the low dimensional feature subspace extraction, we can generate nonlinear multicategory discriminators by solving linear programming problems. Numerical experiments on real world datasets are presented. We show that the fairly low dimensional feature subspace can achieve a reasonable accuracy, and that the linear programming formulations calculate discriminators efficiently. We also discuss a sampling strategy which might be crucial for huge datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.