Abstract

Influenza A virus H5N1 presents a major threat to human health. The entry of influenza virus into host cells is believed to be mediated by hemagglutinin (HA), a virus surface glycoprotein that can bind terminal sialic acid residues on host cell glycoproteins and glycolipids. In this study, we elucidated the pathways through which H5N1 enters human lung carcinoma cell line A549. We first proved that H5N1 can enter A549 cells via endocytosis, as lysosomotropic agents, such as bafilomycin A1 and chloroquine, can rescue H5N1-induced A549 cell death. By using specific inhibitors, and siRNAs that target the clathrin pathway, we further found that H5N1 could enter A549 cells via clathrin-mediated endocytosis, while inhibitors targeting caveolae-mediated endocytosis could not inhibit H5N1 cell entry. These findings expand our understanding of H5N1 pathogenesis and provide new information for anti-viral drug research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.