Abstract
Transition metal oxide (MO) can obviously influence the thermal decomposition process of ammonium polyphosphate (APP) to improve the flame retardant efficiency of intumescent flame retardant composites based on APP in polymer. ZnO, Fe2O3 and TiO2, in same amount were added into APP to study the influence of MO on thermal decomposition behavior of APP, and to analyze the evolution of chemical state of metallic atoms and phosphorus atom and crystal structure in the interaction processes by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) respectively. TGA and XPS spectra showed that MO could catalyze the releasing of NH3 and H2O of APP in the earlier period, and increase the high temperature residue in the later period due to the formation of metallic phosphate. The sequence of catalytic activity for the process of releasing of NH3 and H2O was as follows: ZnO>Fe2O3>TiO2, and that of cross-linking ability for thermal decomposition product P-O of APP was as follows: Fe2O3>ZnO>TiO2. XRD showed that APP could react with ZnO, Fe2O3 and TiO2 to produce Zn(PO3)(2), Fe-4(P2O7)(3) and TiP2O7, respectively, at high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.