Abstract
The mechanical stress change of VO2 film substrate combinations during their reversible phase transformation makes them promising for applications in micro/nanoactuators. V1- xW xO2 thin film libraries were fabricated by reactive combinatorial cosputtering to investigate the effects of the addition of W on mechanical and other transformation properties. High-throughput characterization methods were used to systematically determine the composition spread, crystalline structure, surface topography, as well as the temperature-dependent phase transformation properties, that is, the hysteresis curves of the resistance and stress change. The study indicates that as x in V1- xW xO2 increases from 0.007 to 0.044 the crystalline structure gradually shifts from the VO2 (M) phase to the VO2 (R) phase. The transformation temperature decreases by 15 K/at. % and the resistance change is reduced to 1 order of magnitude, accompanied by a wider transition range and a narrower hysteresis with a minimal value of 1.8 K. A V1- xW xO2 library deposited on a Si3N4/SiO2-coated Si cantilever array wafer was used to study simultaneously the temperature-dependent stress change σ( T) of films with different W content through the phase transformation. Compared with σ( T) of ∼700 MPa of a VO2 film, σ( T) in V1- xW xO2 films decreases to ∼250 MPa. Meanwhile, σ( T) becomes less abrupt and occurs over a wider temperature range with decreased transformation temperatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.