Abstract
Although aboveground biomass (AGB) estimation using area-based approaches (ABAs) and its application to forestry have been actively researched through three decades, this technology has been little operationalized in the Central European forest sector. That means specific recommendations are needed in order to apply ABA for forest biomass modelling in this region. The present study was directed to filling such gaps while examining the effect of input ABA parameters on AGB model quality in conditions of mixed mountainous forests in Central Europe. Specific objectives were to assess whether the strength of the AGB model can be impacted by 1) canopy conditions (leaf-on and leaf-off), 2) airborne LiDAR point density (2.5, 5.0, 7.5, 10.0 points/m2), 3) field methods to estimate AGB (with regeneration components or without), and 4) machine learning methods (AdaBoost, Random decision forest, multilayer neural network, and Bayesian ridge regression). The results show that canopy conditions and airborne LiDAR point densities did not affect the strength of the AGB model, but that model's strength was affected by the vegetation regeneration component in the field biomass reference and by the machine learning method tested for modelling. AdaBoost and random decision forest were the most successful methods. To evaluate the quality of an AGB model it is recommended to combine several individual evaluation functions into the model score. The study highlights several recommendations to follow when estimating AGB from ALS using an ABA in Central European forests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.