Abstract

We systematically analyze the effects of the use of an inaccurate supercell termination and an insufficient supercell size of plane-wave expansion method on the dispersion and the slow light properties of the photonic crystal waveguides. The inattentive use of supercells of photonic crystal waveguides appeared in the literature is found to be yielding errors in the dispersion and slow light characteristics of the fundamental guided mode of photonic crystal waveguides. In addition, extra modes appear in the photonic band gap of the photonic crystal waveguide due to inaccurate supercell termination. By examining the field distribution of the modes, the extra modes can be determined and removed from the band diagram. The dispersion, group index and bandwidth characteristics are observed to be less affecting from inaccurate supercell termination as the number of rows adjacent to the waveguide increases. Moreover, the dispersion and the group index-frequency curves of the fundamental guided mode of correctly terminated supercells are found to be converging as the lateral row number along the line-defect is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call