Abstract
The combined effects of climate change and nutrient availability on Arctic vegetation growth are poorly understood. Archaeological sites in the Arctic could represent unique nutrient hotspots for studying the long-term effect of nutrient enrichment. In this study, we analysed a time-series of ring widths of Salix glauca L. collected at nine archaeological sites and in their natural surroundings along a climate gradient in the Nuuk fjord region, Southwest Greenland, stretching from the edge of the Greenlandic Ice Sheet in the east to the open sea in the west. We assessed the temperature-growth relationship for the last four decades distinguishing between soils with past anthropogenic nutrient enrichment (PANE) and without (controls). Along the East–West gradient, the inner fjord sites showed a stronger temperature signal compared to the outermost ones. Individuals growing in PANE soils had wider ring widths than individuals growing in the control soils and a stronger climate-growth relation, especially in the inner fjord sites. Thereby, the individuals growing on the archaeological sites seem to have benefited more from the climate warming in recent decades. Our results suggest that higher nutrient availability due to past human activities plays a role in Arctic vegetation growth and should be considered when assessing both the future impact of plants on archaeological sites and the general greening in landscapes with contrasting nutrient availability.
Highlights
The combined effects of climate change and nutrient availability on Arctic vegetation growth are poorly understood
Our results highlight the importance of considering effects of past land use when assessing climate-growth relationship for predictions of future vegetation dynamics as well as when using ring width as a proxy for climate reconstruction
Almost 6000 archaeological sites are registered in Greenland
Summary
The combined effects of climate change and nutrient availability on Arctic vegetation growth are poorly understood. Plant growth in the Arctic region is limited by a cold climate, a short growing season and low nutrient availability. We use dendrochronology to compare annual ring width (i.e., radial growth) of one of the dominant, widely distributed, and long-living deciduous species in the Arctic, Greyleaf willow (Salix glauca L.), at nine archaeological sites and in the surroundings areas with low to negligible visible impact from past human disturbance. 120 km to the outer coast (East–West gradient) and represent a suite of different climatic conditions (from continental to oceanic) (Fig. 1) To our knowledge, this is the first study to explore and quantify the higher sensitivity of warming near archaeological sites where nutrient levels are significantly higher than surrounding natural soil systems while accounting for documented biotic disturbances in the r egion[16]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.