Abstract

SUMMARYSmall‐scale fire tests including the Underwriters Laboratories 94 (UL94) vertical burning test and the cone calorimeter test are widely used. In this paper, the ignition times of materials heated by the conical heater of a cone calorimeter and the UL94 flame were measured. It was found that for polymer bars heated by the UL94 flame, the ignition time is relatively short and increases with the specimen thickness. But the contribution of the specimen thickness to the delay of the ignition time is limited. The intrinsic properties of materials play a more important role in the ignition time than the specimen thickness. In addition, respectively corresponding to one‐dimensional, two‐dimensional, and three‐dimensional heat transfer, three heating modes of the UL94 flame were presented and compared with the conical heater. It was found that whether the heat source is the conical heater or the UL94 flame, the ignition time depends on the heat flux and the multidimensional heat transfer. The ignition time decreases with the increasing heat flux, and the magnitude order of the ignition time might drop when the heating mode changes from one‐dimensional to multidimensional heat transfer. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call