Abstract

Main reason of compressor instability is boundary layer separation on the surface of blades. As one of flow control methods of the compressor, slotted blade has attracted many researchers’ attention because of its simple geometric structure and remarkable flow control effect. In order to evaluate its availability in the compressor, a type of convergent slot is designed to implement in a single-stage transonic axial compressor. Three configurations, i.e. rotor slot, stator slot and rotor-stator combined slot, are introduced to study the aerodynamic performance of compressor by numerical simulations. Furthermore, flow structures have been analyzed to explain the corresponding mechanism. The results show that overall stability margin of the compressor has been improved by flow control with slotted blade. Behavior of the rotor slot is better than that of the stator slot, but due to mass flow leakage in the slot, peak efficiency and chocking mass flow rate of the compressor are decreased by 1.18% and 3.8% respectively. The low momentum flow on pressure surface is sucked into the jet slot of stator blade, which improves the overall stability margin of 0.63%. The combined scheme with slotted rotor and slotted stator has obtained the best aerodynamic behavior with the increase of the overall stability margin of 2.83%. During the future research, main goal will be improvement of the compressor performance and extension of the mass flow rate range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call