Abstract
Late-life depression (LLD) is characterized by differences in resting state functional connectivity within and between intrinsic functional networks. This study examined whether clinical improvement to antidepressant medications is associated with pre-randomization functional connectivity in intrinsic brain networks. Participants were 95 elders aged 60 years or older with major depressive disorder. After clinical assessments and baseline MRI, participants were randomized to escitalopram or placebo with a two-to-one allocation for 8 weeks. Non-remitting participants subsequently entered an 8-week trial of open-label bupropion. The main clinical outcome was depression severity measured by MADRS. Resting state functional connectivity was measured between a priori key seeds in the default mode (DMN), cognitive control, and limbic networks. In primary analyses of blinded data, lower post-treatment MADRS score was associated with higher resting connectivity between: (a) posterior cingulate cortex (PCC) and left medial prefrontal cortex; (b) PCC and subgenual anterior cingulate cortex (ACC); (c) right medial PFC and subgenual ACC; (d) right orbitofrontal cortex and left hippocampus. Lower post-treatment MADRS was further associated with lower connectivity between: (e) the right orbitofrontal cortex and left amygdala; and (f) left dorsolateral PFC and left dorsal ACC. Secondary analyses associated mood improvement on escitalopram with anterior DMN hub connectivity. Exploratory analyses of the bupropion open-label trial associated improvement with subgenual ACC, frontal, and amygdala connectivity. Response to antidepressants in LLD is related to connectivity in the DMN, cognitive control and limbic networks. Future work should focus on clinical markers of network connectivity informing prognosis. ClinicalTrials.gov NCT02332291.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have