Abstract

Aiming to save the high-priced Co resource, Ni, Cu and Cr3C2 were simultaneously used to modify WC–10Co fine grained hardmetal, and the effects of sintering temperature on microstructure, mechanical properties were investigated. The combined introduction of Cu/Cr3C2 can significantly inhibit the growth of WC grains caused by Ni. When sintered at 1420 °C, the hardness, strength and fracture toughness of WC–0.5Cr3C2–(5.4Co3.6Ni1Cu) alloy reach to 1652 HV30, 3301 MPa and 12.01 MPa·m1/2, respectively, which are higher than those of WC–10Co alloy (1601 HV30, 3193 MPa and 11.75 MPa·m1/2). In term of corrosion resistance, Ni and Cr3C2 can eliminate the adverse effect caused by Cu, as evidenced by the decreased passivation current density (Ipp) and the increased charge-transfer resistance (Rct). In this regard, Ni/Cu/Cr3C2 composite additive would be an effective method to conduct the partial replacement of Co by other low-priced metals without sacrificing the mechanical properties and the corrosion resistance of WC–Co hardmetal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.