Abstract
For spacecraft working in vacuum environment, sublimator is an effective heat rejection approach to reject system’s peak heat load, and supplement spacecraft radiation heat rejection. For a spacecraft active fluid loop thermal control system combined with sublimator, waste heat generated from multi-point distributed heat sources could be collected by the fluid loop efficiently. However, the heat and mass transfer performances of the sublimator combined with fluid loop have not been adequately studied in previous research, especially for the influences of the heat load. Since work fluid mass flow rate is the main factor affecting heat load of the fluid loop, this context experimentally studied influences of the fluid loop mass flow rate on sublimator start-up transient characteristics, including heat transfer performances, response time, and work stability. Results indicated that the fluid loop mass flow rate affected the sublimator heat and mass transfer performances obviously, but the heat rejection ability is not always increase with the increasing of the fluid loop mass flow rate. In addition, we obtained the condition to judge whether there is a positive correlation between heat rejection ability and fluid loop mass flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.