Abstract

Abstract Previous studies have neglected to distinguish between a central pressure deficit due to a tornado itself and due to a parent mesocyclone in which the tornado is embedded. To obtain improved understanding of the influences of larger-scale vortex variability on smaller-scale tornado pressure deficits, a parametric tangential wind model supplemented with a cyclostrophic speed equation was used to explore the role that the variability plays in influencing radial pressure deficits by deducing radial pressure deficit distributions from radial profiles of hypothetically superpositioned, dual-maxima tangential velocities in the free atmosphere, where a dominant swirling flow was in approximate cyclostrophic balance. The cyclostrophic approximation was partitioned into two separate components, allowing one to scrutinize and determine which of the concentric vortices contributes most significantly to the tornado pressure minima. The model parametrically constructed a smaller-scale, stronger vortex (rapidly swirling flow) that was centered within a larger-scale, weaker vortex (slowly swirling flow) to represent a tornado centered within a supercell, low-level, parent mesocyclone above a tornado boundary layer. The radial pressure deficit fluctuations were varied by changing one of five key velocity-controlling parameters assigned to one vortex to represent a variety of vortex strengths. Based on eight experiments, the larger-scale, weaker (smaller scale, stronger) vortex contributed less (more) to the total pressure deficit than the smaller-scale, stronger (larger scale, weaker) vortex. The stronger vortex centered within the larger-scale, weaker vortex has a larger central pressure minimum than it does in the absence of the larger-scale vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.