Abstract

C/C-SiC composite as low expansion material for space opto-mechanical structures was prepared by gaseous silicon infiltration after high temperature treatment (HTT) on C/C. 2000°C and 2400°C were selected as the treatment temperatures for C/C to study the influences on the properties of C/C-SiC composite. The graphitization level of amorphous C in C/C was improved by HTT. The porosity of C/C increased from 32.88% to 34.25% (2000°C) and 41.06% (2400°C) respectively. In addition, a higher HTT temperature led to a higher density of C/C-SiC composite and a lower SiC content. Furthermore, the mechanical properties and coefficient of thermal expansion (CTE) of the composite decreased as the temperature increased. After 2000°C HTT, the CTE of C/C-SiC composite decreased to-0.055×10-6·K-1 and the mechanical properties (218 MPa) could meet the application demand at the same time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call