Abstract

It is necessary to reveal the responses of the biomass production and metal accumulation capacity of different plants to the variations of atmospheric conditions and soil metals, with the acceleration of urbanization and industrialization. In the present study, a series of experiments were designed to study the individual and interactive influences of O3 and CO2 fumigation on the biomass yield, variation in different leaf types, distribution of cadmium (Cd) in various tissues, and phytoremediation efficiency of Festuca arundinacea using open top chambers. The results found that an elevated O3 content of 80 ppb, a potential O3 content predicted for 2050, decreased the total dry mass of F. arundinacea and increased the proportion of falling leaf tissues of the species significantly. Under the same ambient CO2 levels, O3 fumigation increased the Cd concentrations in the roots and the fresh, mature, senescent, and dead leaf tissues by 27.8%, 133.3%, 94.4%, 125.3%, and 48.6%, respectively. An elevated CO2 content (550 ppm) promoted the biomass yield of F. arundinacea, particularly in the falling leaf tissues. The results of the combined O3 and CO2 treatment showed that CO2 fumigation alleviated the negative effects of O3 on plant growth and increased the accumulation capacity in different plant tissues. Significantly more Cd was accumulated in senescent and dead leaves under the synergistic action of CO2 and O3, suggesting that the phytoremediation effect on F. arundinacea using the falling leaves harvesting method could be improved under the future atmospheric environment of high CO2 and O3 levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call