Abstract
Catalytic oxidation is considered as the most effective and economical method to remove low concentration volatile organic compounds (VOCs). Activation of oxygen to form active oxygen species on metal oxides catalyst plays a key role in the process. Three copper-manganese oxide catalysts with cubic Cu1.5Mn1.5O4 phases were prepared by microwave heating (CM-MW), sol–gel (CM-SG) and co-precipitation (CM-CP) methods, and applied for the elimination of toluene and benzene as representative aromatic VOCs. These catalysts exhibit different catalytic oxidation performance due to their different physicochemical properties. Various characterizations were used to clarify the role of different oxygen species in the oxidation of VOCs, and the reaction pathway. In situ DRIFTS were carried out to explore the function of surface adsorbed oxygen, oxygen vacancy, and surface lattice oxygen in the catalytic oxidation of VOCs over three catalysts. Various types of intermediate species and detailed reaction pathways are also explored by combining in situ DRIFTS and mass spectrometry. Among these catalysts, CM-MW with nanosheet morphology shows the best catalytic oxidation performance of toluene and/or benzene with/without H2O due to the most abundant active oxygen species, and the highest oxygen vacancy concentration which is beneficial to activate oxygen. Meanwhile, toluene and benzene do not interfere with each other during the mixture oxidation. This study can provide new inspiration for rational design of metal oxide catalysts to remove VOCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.