Abstract

To amend the oxidation and ablation resistance of C/C composites, HfC-ZrC biphase coating was synthesized by CVD. Influences of deposition temperature and CH4 flow rate on the deposition rate, phase constitution and microstructure of the HfC-ZrC coating were investigated. Ablation behavior and ablation mechanism of the HfC-ZrC coating with different ZrC contents were examined. With the deposition temperature rising, the deposition rate and grain size of the HfC-ZrC coating increased. High flow rate of CH4 was beneficial to improving the deposition rate and reducing the grain size of the HfC-ZrC coating. Moderate ZrC content in the HfC-ZrC coating was conducive to the process of solid solution sintering among HfO2 and ZrO2 grains, leading to generating a continuous and compact oxide layer. The coating with HfC/ZrC mole ratio of 1:1 exhibited superior anti-ablation performance, owing to its flat and compact structure and sufficient solid solution sintering among the oxide grains during ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call