Abstract

AbstractGlass–ceramics capacitors have great application potential in pulsed power systems, due to ultrafast discharge speed and high dielectric breakdown strength (BDS). Here, lead‐free niobate glass–ceramic dielectric materials were synthesized, and the effects of heat treatment temperature on the dielectric, ferroelectric, and energy storage properties of glass–ceramics were investigated comprehensively. The results exhibit that the dielectric permittivity first increases and then decreases as the crystallinity increases; however, the dielectric BDS diminishes. At the optimum crystallization temperature of 740°C, the maximum value of discharge energy density is 2.2 J/cm3 at 600 kV/cm, which is about 7.6 times that of mother glass. Furthermore, an ultrahigh power density of about 380.9 MW/cm3 and ultrafast discharge speed of about 11.2 ns were achieved simultaneously. Meanwhile, great thermal stability of charge–discharge property was verified in this glass–ceramics. According to P–E loops and dielectric test result, a high dielectric constant (∼207) and low dielectric loss (<0.005) as well as high energy storage efficiency of about 94.9% were achieved for G740 sample. The previous results make the obtained glass–ceramic as potential candidates in dielectric capacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call