Abstract

With the rapid increase of carbon nanotube (CNT) applications, there are considerable concerns of their inevitable releases into the aquatic environments. CNTs may interact with and further influence the fate and transport of other pollutants such as toxic metals. In the present study, non-covalent and nontoxic dispersant polyvinyl pyrrolidone (PVP) was used to provide a relatively stable test solution for CNTs. The dissolved uptake rate constant (ku) and the dietary assimilation efficiency (AE) of cadmium (Cd) and zinc (Zn) were then quantified in a freshwater zooplankton Daphnia magna in the presence of different CNTs (without functionalized – single-walled nanotubes-SWNTs, multi-walled nanotubes-MWNTs, and with functionalized – F-SWNTs, F-MWNTs, containing oxygen functional groups at the defect sites of CNTs) concentrations. We demonstrated that different CNTs exposures led to distinctive metal accumulation patterns. Non-functionalized CNTs significantly decreased the metal uptake rate from the dissolved phase, possibly because of their effects on the physiological activity of animals. In contrast, the F-CNTs (F-SWNTs and F-MWNTs) adsorbed the metals and increased the metal accumulation in daphnids in a concentration-dependent manner, due to the ingestion of F-CNTs associated metals. The AEs of metals in D. magna were elevated by CNTs physical blocking of the animal guts. Our present study showed that CNTs could serve as a new pathway for metal accumulation. This raised a new environmental problem of CNTs since they may induce the accumulation of toxic metals from the dietary exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.