Abstract
The present work investigates the structural, optical, magneto-dielectric and antibacterial characteristics of ZnO-NiFe2O4 nanocomposites (NCs). Spinel NiFe2O4 and ZnO powders were synthesized individually by the sol–gel method. Then by using the ultrasonification technique, a series of (1-x)NiFe2O4+xZnO (x = 0.0, 0.15, 0.30, and 0.45) NCs were prepared. Powder XRD pattern confirms the existence of both spinel NiFe2O4 and ZnO peaks in the nanocomposites. The observation reveals that as the amount of ZnO in the nanocomposite, there is an increase in the lattice constant from 8.372 Å to 8.383 Å. The addition of ZnO in the nanocomposites broadens the light-absorbing range and raises the band gap (eV) energy from 1.7 eV to 2.5 eV. The dielectric constant measured at 1 kHz decreased from 496 to 403 as the ZnO content in the nanocomposite increased. However, the dielectric constant for NF0.4/ZnO0.6 NCs measured at 1 kHz increased from 403 to 583 for an applied magnetic field of 7000 Oe. Spinel NiFe2O4 with ZnO content shows lesser saturation magnetization (Ms) and coercivity compared to pure NiFe2O4. The magneto-capacitance (MC%) as a function of the magnetic field for all composition shows a positive response. NF0.55/ZnO0.45 (40 µg/ml) NCs showed better antimicrobial activity as compared to NiFe2O4 (40 µg/ml). This study may extend the scope of this composite as an electrode material in supercapacitors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have