Abstract

ObjectiveTo evaluate the influence of zinc oxide quantum dots (ZnOQDs) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. Materials and methodsZnOQDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnOQDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student’s t-test (α = 0.05). ResultsThe antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnOQDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). ConclusionZnOQDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnOQDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. Clinical significanceZnOQDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.