Abstract
The effect of Ar pressure on the performance of W/Si multilayers is investigated. W/Si multilayers were deposited by a high vacuum DC magnetron sputtering system. The Ar pressure was changed from 1.0 to 5.0 mTorr with an interval of 1.0 mTorr during the deposition process. Electron probe microanalysis and Rutherford backscattering are performed to determine the Ar content incorporated within these multilayers. The results demonstrate that less Ar is incorporated within the sample when more Ar is used in the plasma, which could be explained by the increase of the collision probability and the decrease in the kinetic energy of Ar ions arriving at the substrate when more Ar exists. The grazing incident X-ray reflectivity (GIXR) at 0.154 nm is used to determine the structural parameters of the layers. The results show that the structures of these multilayers prepared at different Ar pressure are very similar and that the interface roughness increases quickly when the Ar pressure is higher than 3.0 mTorr. The measurements of the extreme ultraviolet (EUV) reflectivity indicate that the reflectivity decreases when Ar pressure increases. The fitting results of GIXR and EUV reflectivity curves indicate that with an increase of Ar pressure, the density and decrement of the refractive index are increased for W and decreased for Si, which is mainly due to (1) the decrease in Ar content incorporated within these multilayers which affects their performance and (2) the increase of collision probability for sputtered W and Si, the decrease of their average kinetic energy arriving at the substrate, and thus the loosing of their layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.