Abstract

To assess the influence of windowing and metal artefact reduction (MAR) algorithms on the volumetric dimensions of high-density materials using two CBCT systems. Four cylinders of amalgam, cobalt-chromium, gutta-percha, titanium and zirconium, were manufactured and their physical volumes (PV) were measured. A polymethyl methacrylate phantom containing the cylinders was submitted to CBCT acquisitions with Picasso Trio and OP300 units with their MAR enabled and disabled. The tomographic volume (TV) of all the cylinders was obtained by semi-automatic segmentation using two windowing adjustments: W1-large window width and upper window level; W2-narrow window width and low window level. Volumetric distortion was expressed as the difference between TV and PV. Statistics comprised intraclass correlation coefficient (ICC) and analysis of variance (ANOVA) for repeated measures with Tukey post hoc test (α = 5%). The ICC values ​​indicated excellent reproducibility of TV. Gutta-percha and titanium resulted in the smallest volumetric distortion. Using W1 provided less volumetric distortion for almost all experimental conditions (p < 0.05). Activating MAR algorithm of Picasso Trio underestimated gutta-percha and titanium TV (p < 0.05) and was inefficient in significantly reducing the volumetric distortion of the other materials (p > 0.05). Disabling MAR algorithm of OP300 resulted in smaller volumetric distortion for almost all experimental conditions (p < 0.05). The TV of gutta-percha and titanium were closer to the PV. In general, the MAR algorithms of both systems were inefficient in significantly reducing the volumetric distortion of high-density materials. We encourage the use of large window width and upper window level to evaluate high-density materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call