Abstract
By analysing long- and short-term seismological measurements at wind farms close to the town of Landau, SW Germany, we present new insights into ground motion signals from wind turbines (WTs) at local seismic stations. Because of their need to be located in similar regions with sparsely anthropogenic activities, wind turbines impact seismic stations and their recordings in a way that is not yet fully understood by researchers. To ensure the undisturbed recording tasks of a regional seismic array or a single station by a protected area around those endangered stations, it is very important to investigate the behavior of WTs as a seismic source. For that reason, we calculate averaged one-hour long spectra of the power spectral density (PSD) before and after the installation of a new wind farm within the investigated area. These PSD are ordered according to the rotation speed. We observe a clear increase of the PSD level after the WT installation in a frequency range of 0.5 to 10 Hz up to a distance of 5.5 km away from the WT. By analysing seismic borehole data, we also observe a decrease of the PSD of wind dependent signals with depth. The impact of wind-dependent signals is found to be much more pronounced for the shallower station (150 m depth) than for the deeper one (305 m depth). Using short-term profile measurements, we fit a power-law decay proportional to 1/r b to the main WT-induced PSD peaks and differentiate between near-field and far-field effects of ground motions. For low frequencies in the range from 1 to 4 Hz, we determine a b value of 0.78 to 0.85 for the far field, which is consistent with surface waves. The b value increases (up to 1.59) with increasing frequencies (up to 5.5 Hz), which is obviously due to attenuating effects like scattering or anelasticity. These results give a better understanding of the seismic wavefield interactions between wind turbines (or wind farms) with nearby seismic stations, including borehole installations, in a sedimentary setting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have