Abstract

In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g., mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in the presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and the amount of hydrogen that is uptaken during welding, hydrogen-assisted cracking (HAC) can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume, and total heat input are technical and economical benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both (1) single-pass and (2) multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length, and varied arc type (transitional arc and modified spray arc). The results show that all welding parameters have significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration has been reduced. Whereby, differences in hydrogen concentrations between both arc types are present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call