Abstract

AbstractA dual‐scale ablation model was developed to address the lack of research on the influence of weaving parameters of gradient 3D woven composites on the ablation performance. It consists of a mesoscale heat transfer model and a macroscale ablation model, and they are effectively connected by parametric conduction. By comparing with experimental results, the accuracy of the model was demonstrated. The effect of yarn spacing, recession resistant layer thickness on the thermal protection performance of gradient 3D woven composite was investigated. Furthermore, the effect of each weaving parameter on the integrated performance of ablation resistance, thermal insulation and light‐weight level is evaluated. The results show each weaving parameter has a substantial impact on thermal protection performance, with weft spacing and binder yarn spacing being the most significant influence. Reasonable design of these parameters can facilitate the comprehensive performance of composites. These results serve as a useful reference for refinement design of thermal protection materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.