Abstract

Rainbow smelt are an important prey species for native and introduced salmonines in the Great Lakes. In Lake Huron, rainbow smelt populations are characterized by variable recruitment and year-class strength. To understand the influence of water temperature on reproduction, growth, and survival during larval-fish stages, we sampled spawning tributaries and larval-fish habitats during 2008 and 2009 in St. Martin Bay, Lake Huron. Spawning by rainbow smelt occurred primarily when stream temperatures were between 3 and 10°C, which resulted in a 7–10-day spawning period during 2008, and a 15–20-day spawning period during 2009. Regardless of these differences in spawning temperatures and duration, peak larval-fish densities during 2008 were double those observed during 2009. Length–frequency analysis of larval-fish populations during both years revealed stream-hatched fish during May and a later emergence of larval rainbow smelt during summer, presumably originating from lake spawning. Warmer bay water temperatures led to earlier emergence of lake-spawned rainbow smelt larvae during 2009. Stream-hatched fish larvae experienced large-scale mortality during May 2008 resulting in a bay population consisting primarily of lake-spawned rainbow smelt larvae, but during 2009 both stream- and lake-hatched cohorts experienced higher survival concomitant with significantly higher mean population growth rates. Higher larval-fish growth rates during 2009 appeared to be density-dependent and facilitated by warmer water temperatures during late June and cooler water temperatures during July. Temperature-mediated differences in annual growth rates and irregular contributions from stream- and lake-hatched fish larvae are important factors affecting survival and abundance of young-of-the-year rainbow smelt in Lake Huron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call