Abstract

AbstractThis paper describes an experimental study of NO removal from a simulated exhaust gas by repetitive surface discharge on a glass barrier subjected to polarity‐reversed voltage pulses. The very fast polarity‐reversal with a rise time of 20 ns is caused by direct grounding of a charged coaxial cable 10 m in length. The influence of the voltage rise time on energy efficiency for NO removal is studied. The results of NO removal using a barrier‐type plasma reactor with a screw‐plane electrode system indicate that the energy efficiency of very fast polarity reversal caused by direct grounding is higher than that of slower polarity reversal caused by grounding through an inductor at the cable end. The energy efficiency of direct grounding is approximately 80 g/kWh for a 50% NO removal ratio and approximately 60 g/kWh for a 100% NO removal ratio. Very intense discharge light is observed at an initial time of 10 ns for fast polarity reversal, whereas the intensity of the initial discharge light for slower polarity reversal is relatively small. To confirm the effectiveness of the polarity‐reversed pulse application, a comparison of the energy efficiency of polarity‐reversed voltage pulses and an AC 60‐Hz voltage is presented. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 178(4): 32–38, 2012; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.21215

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.