Abstract

We have previously proposed and validated a mathematical model of myocardium contraction–relaxation cycle based on current knowledge of regulatory role of Ca 2+ and cross-bridge kinetics in cardiac cell. That model did not include viscous elements. Here we propose a modification of the model, in which two viscous elements are added, one in parallel to the contractile element, and one more in parallel to the series elastic element. The modified model allowed us to simulate and explain some subtle experimental data on relaxation velocity in isotonic twitches and on a mismatch between the time course of sarcomere shortening/lengthening and the time course of active force generation in isometric twitches. Model results were compared with experimental data obtained from 28 rat LV papillary muscles contracting and relaxing against various loads. Additional model analysis suggested contribution of viscosity to main inotropic and lusitropic characteristics of myocardium performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call