Abstract
AbstractSoil cultivation techniques can change the physical properties of soil and have the potential to influence the growth and productivity of crops. In the 2022 season, a research study was carried out on Gypsfreous soil in the College of Agriculture fields at Tikrit University. The purpose of the study was to investigate how the physical properties of the soil are influenced by three different plow types and varying plowing speeds. The study was planned using split plots within a Complete Randomized Blocks Design, with three types of plows (moldboard plow, disc plow, and chisel plow) and three tractor speeds (3.8, 5.8, and 7.6 km h−1) as the experimental treatments.The experiment's findings indicated that the moldboard plow resulted in a greater reduction in bulk density compared to the disc plow. Consequently, the soil's bulk density decreased, and the percentage of porosity increased. On the other hand, the chisel plow had the lowest soil-specific resistance value and the highest soil volume disturbed value. The speed of operation above 3.8 km h−1 proved to be the most effective in reducing bulk soil density, increasing soil porosity, and reducing specific soil resistance. However, at a speed of 7.6 km h−1, the soil volume disturbed was significantly higher than at other speeds. Additionally, the experiment's findings demonstrated that the moldboard plow, operating at a speed of 3.8 km h−1, was significantly more effective than other methods in decreasing the soil's bulk density, increasing the porosity percentage, and reducing the specific soil resistance. Conversely, the chisel plow, working at a speed of 7.6 km h−1, had a significant advantage in achieving the highest value for the volume of soil disturbed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.