Abstract
Repetitive elements are the main components of many plant genomes and play a crucial role in the variation of genome size and structure, ultimately impacting species diversification and adaptation. Alstroemeriaceae exhibits species with large genomes, not attributed to polyploidy. In this study, we analysed the repetitive fraction of the genome of Bomarea edulis through low-coverage sequencing and in silico characterization, and compared it to the repeats of Alstroemeria longistaminea, a species from a sister genus that has been previously characterized. LTR-retrotransposons were identified as the most abundant elementsin the B. edulis genome (50.22%), with significant variations in abundance for specific lineages between the two species. The expansion of the B. edulis genome was likely due to three main lineages of LTR retrotransposons, Ty3/gypsy Tekay and Retand and Ty1/copia SIRE, all represented by truncated elements which were probably active in the past. Furthermore, the proportion of satDNA (~ 7%) was six times higher in B. edulis compared to A. longistaminea, with most families exhibiting a dispersed, uniform distribution in the genome. SatDNAs, thus, contributed to some extent to genome obesity. Despite diverging around 29 Mya, both species still share some satDNA families and retrotransposons. However, differences in repeat abundances and sequence variants led to genome differentiation despite their similar sizes and structure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have