Abstract
Interfacial anchoring interactions between aromatic amino acid residues and the lipid-water interface are believed to be important determinants for membrane protein structure and function. Thus, it is possible that molecules that partition into the lipid-water interface can influence membrane protein activity simply by interfering with these anchoring interactions. Here we tested this hypothesis by investigating the effects of 2,2,2-trifluoroethanol (TFE) on the interaction of a Trp-flanked synthetic transmembrane peptide (acetyl-GW 2(LA) 8LW 2A-NH 2) with model membranes of dimyristoylphosphatidylcholine. Two striking observations were made. First, using 2H nuclear magnetic resonance on acyl chain deuterated lipids, we found that addition of 4 or 8 vol % of TFE completely abolishes the ability of the peptide to order and stretch the lipid acyl chains in these relatively thin bilayers. Second, we observed that addition of 8 vol % TFE reduces the tilt angle of the peptide from 5.3° to 2.5°, as measured by 2H NMR on Ala- d 4 labeled peptides. The “straightening” of the peptide was accompanied by an increased exposure of Trp to the aqueous phase, as shown by Trp-fluorescence quenching experiments using acrylamide. The observation of a reduced tilt angle was surprising because we also found that TFE partioning results in a significant thinning of the membrane, which would increase the extent of hydrophobic mismatch. In contrast to the Trp-flanked peptide, no effect of TFE was observed on the interaction of a Lys-flanked analog (acetyl-GK 2(LA) 8LK 2A-NH 2) with the lipid bilayer. These results emphasize the importance of interfacial anchoring interactions for membrane organization and provide new insights into how molecules such as TFE that can act as anesthetics may affect the behavior of membrane proteins that are enriched in aromatic amino acids at the lipid-water interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.