Abstract

The aim of this study was to compare the pattern of force production and center of mass kinematics in maximal vertical jump performance between power athletes, recreational bodybuilders, and physically active subjects. Twenty-seven healthy male subjects (age: 24.5 +/- 4.3 years, height: 178.7 +/- 15.2 cm, and weight: 81.9 +/- 12.7 kg) with distinct training backgrounds were divided into 3 groups: power track athletes (PT, n = 10) with international experience, recreational bodybuilders (BB, n = 7) with at least 2 years of training experience, and physically active subjects (PA, n = 10). Subjects performed a 1 repetition maximum (1RM) leg press test and 5 countermovement jumps with no instructions regarding jumping technique. The power-trained group jumped significantly higher (p < 0.05) than the BB and PA groups (0.40 +/- 0.05, 0.31 +/- 0.04, and 0.30 +/- 0.05, respectively). The difference in jumping height was not produced by higher rates of force development (RFD) and shorter center of mass (CM) displacement. Instead, the PT group had greater CM excursion (p < 0.05) than the other groups. The PT and BB groups had a high correlation between jumping height and 1RM test (r = 0.93 and r = 0.89, p < 0.05, respectively). In conclusion, maximum strength seems to be important for jumping height, but RFD does not seem relevant to achieve maximum jumping heights. High RFD jumps should be performed during training only when sport skills have a time constraint for force application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call