Abstract
After polystyrene@titanium dioxide (PS@TiO2) composite with different size was calcined at designated temperature, TiO2 hollow sphere with controllable size was obtained for high efficient photo-reduction of Cr(VI). The feature of the TiO2 hollow sphere was investigated by SEM, TEM, XRD, UV–Vis, and photoluminescence. The photo-reduction of Cr(VI) were measured for the performance assessment of the TiO2 hollow sphere, Cr(VI) was used as an electron acceptor. After irradiation for 2h, the photo-reduction rate of Cr(VI) (pH=2.82) for TiO2(450nm) was 96%, which exhibited an increase of 5% and 8% compared with TiO2(370nm) and TiO2(600nm). The absorption edges of TiO2 hollow sphere (450nm) was largest with the increasing of hollow sphere size from 370 to 600nm. The optimal hollow sphere size of TiO2 was 450nm for the photo-reduction of Cr(VI), because the light-harvesting efficiency (the best of absorption edge) and photo-generated electron-hole separation rate (the best of photo-reduction rate) of TiO2 hollow sphere were controlled by its hollow sphere size. In addition, we find that the behavior of the hydrogen production was inhibited by the coexistence Cr(VI) solution. This study can improve our understanding of the mechanism for the activity enhancement by the optimal hollow sphere size of TiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.