Abstract

A transient three dimensional model for describing the thermo-capillary convection and migration behavior and the resultant distribution state of reinforcing particles during selective laser melting of AlN/AlSi10Mg is proposed. The powder–solid transformation, temperature dependent physical properties and interaction between the reinforcement and the melt are taken into account. The effect of the laser energy per unit length (LEPUL) on the molten pool dynamics, cooling rate and the resultant sizes and distribution state of AlN reinforcement has been investigated. It shows that the thermo-capillary convection pattern changes from inward flow pattern to outward one, due to the appearance of the oxidation in molten pool. Therefore, the morphology of the top surface undergoes a continuous variation from the balling phenomenon, to the discontinuous tracks and finally to the formation of a flat and dense one. Meanwhile, both the clockwise and counterclockwise convection patterns are produced in the molten pool, caused by the interaction of reinforcing particles and the melt. An increase in LEPUL will significantly intensify the thermo-capillary convection whereas result in a decrease in the cooling rate of the molten pool. As LEPUL decreases from 1800J/m to 450J/m, the distribution state of AlN particles changes from the severe aggregation, then to the formation of partial aggregation and finally to the homogeneous distribution in the solidified matrix. The particle sizes of AlN reinforcement are experimentally acquired, which are in a good agreement with the results predicted by simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call