Abstract
PurposeThe paper aims to evaluate the influence of thermo-chemical cycles of oral fluids on the surface attributes (roughness and microhardness) of lithium disilicate glass-ceramic (LDC) crown restorations manufactured with CAD/CAM technology.Design/methodology/approachThere have been 24 LDC crowns manufactured using the CAD/CAM process for their respective preparation dies ply methyl methacrylate (PMMA) of mandibular left second premolar tooth (n = 8 each group). The standard procedure was used to glaze 16 crown samples (Groups 2 and 3).Samples of Group 3 were aged with thermal (563°C and 5563°C) and pH (2–14) cycles. All 24 samples were tested with a Profilometer and a Vicker hardness tester was used for their surface roughness and hardness measurement, respectively.FindingsIn statistical examination on SPSS Statistics 20 (IBM) software, of surface roughness values (Ra) and Vicker hardness values from different groups, Tukey HSD test was executed in one-way ANOVA (a = 0.05). The means Ra for groups were accordingly Group 3 > Group1 > Group 2 (p < 0.001). Similarly, micro-hardness was in order of Group 2 > Group 1 > Group 3 (p < 0.001).Research limitations/implicationsThe research work does not have any limitations.Originality/valueSurrounding temperature and pH significantly impact the surface characteristics of lithium disilicate crown restoration. The study also reveals the inverse relationship between surface roughness and surface hardness parameters. The observed results and facts revealed well in agreement with the past research studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have