Abstract

Tellurium films with nominal thicknesses of 30, 90 and 300 nm were prepared by thermal evaporation in vacuum at a low deposition rate of 0.3 nm/s. The morphology evolution with the increase of the film thickness was observed by scanning electron microscopy and atomic force microscopy.Nanorods with a width of about 40 nm were observed on the thinnest films surface. On the 90 nm thick films, the formations grew in priority in the z-direction to nanoblades with the same width, but a length of about 100 nm. The further increase of the thickness led to an increase of the 2D nanoobjects' width and length and formation of a stacked nanosheet structure. The surface root-mean-square roughness (Sq) increased with the thickness of the films.Preliminary investigations of the sensing ability of the as-deposited tellurium films with different thicknesses towards water (H2O), ethanol (C2H5OH), acetone (C3H5OH), and ammonia (NH3) vapors were performed by measuring the vapor-induced changes in the film dark current. The films showed appreciable response only to ammonia vapors; their sensitivity was almost equal for the 30 and 90 nm thick films, and decreased significantly for the film tkness of 300 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.