Abstract

The acoustic impedances of matching layers and their thicknesses are the most important and influential parameters in the performance of airborne ultrasonic transducers. In this paper, the optimum thicknesses of the matching layers of the narrow band transmitter ultrasonic transducer regarding transmission coefficient were determined by individual calculations using a genetic algorithm. The genetic algorithm was chosen because it is a powerful tool in the optimization domain. The results show that the permitted thickness variation is 0.0005% for one matching layer, and this value can be increased to 0.0031%, which corresponds to the permitted thickness variation for five matching layers. Approximately 55% enhancement in the transmission coefficient is theoretically possible, and 42% enhancement was observed experimentally when the genetic algorithm was applied to calculate the matching layer thicknesses in place of the quarter wavelength equation that is conventionally used for the determination of layer thickness. To verify our approach, the effect of the thickness variation on the transmission coefficient has been investigated experimentally for three, four and five matching layers. The experimental results displayed good agreement with the theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call