Abstract

The informative frequency band (IFB) plays a vital role in detecting defects in complex machinery through visible informative features. In the present work, a denoising filter has been designed to enhance the small non-stationarities present in the signal. Initially, the system impulse is computed to estimate the filter coefficients which are further optimized by the mountain gazelle optimization (MGO) based on the maximum value fitness function. The novel sparsity index based on kurtosis and negentropy (NE) is put forward as the fitness function. Then, optimized coefficients are convolved with the system impulse to design the denoising filter. The efficacy of the designed filter is verified through vibration and acoustic signals from the defective components of the belt conveyor system. The designed filter is better able to extract the impulsiveness from the signal, give improved values of kurtosis and signal-to-noise ratio (SNR), and reduce interferences from other machinery components and the environment simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.