Abstract
The effect of operational temperature on the electrophysical properties of polymer based electroluminescent structures is examined. For this purpose thin film of light-emitting semiconductor polyphenylenevinylene derivative is deposited between two indium-tin oxide (ITO) electrodes. DC current-voltage (I-V) characteristics of the fabricated devices ITO/polyphenylenevinylene derivative PPV-D/ITO are measured at varying ambient temperatures, ranging from room temperature (25°C) to 70°C. Several important electrical parameters like a trap factor, traps activation energy distribution, free carriers’ density, trapped carriers density, and effective mobility are estimated from measured temperature dependent I-V curves. Such analysis of the charge transport process in polymer devices may give information needed for optimization of the existing structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.