Abstract

As a piece of high-intensity running equipment, the wear of an internal mixer determines the quality of rubber and its life. In general, the wear of an internal mixer is caused by the friction between the rubber and metal during the mixing process, and the most severe wear position is the end face of the equipment. In this paper, a mixture of multi-walled carbon nanotubes (MWCNTs) and carbon fibers (CFs) are added to rubber by mechanical compounding to obtain MWCNT/CF/carbon black (CB) composites. By investigating the synergistic mechanism of MWCNTs and CFs, we analyze the effect of the MWCNT/CF ratio on the frictional wear of metal on the end face of the internal mixer. At the microscopic level, MWCNTs and CFs form a spatial meshwork with CB particles through synergistic interactions. The CB particles can be adsorbed on the spatial meshwork to promote the dispersion of CB particles. In addition, the formation of oil film can be slowed down due to the spatial meshwork, which could hinder the spillage of aromatic oil. Meanwhile, the spatial meshwork serves as a physical isolation layer between the rubber and metal to reduce friction. Therefore, it dramatically impacts the dispersion degree of CB particles, the friction coefficient, the roughness of the surface, and the wear of metal. It shows that the synergistic effect of MWCNT/CF and CB particles is best when the CF content of the rubber matrix is 5 phr, showing the most stable spatial network structure, the best dispersion of CB particles, and minor wear on the end face of the internal mixer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.