Abstract

A microtibological study of the effect of the CMP machining surface damages (SD) on the micromechanical properties of AlN electro-static chuck (ESC) for silicon plasma etching is presented. AFM and SEM examinations of the AlN ESC, which were CMP finished to a surface roughness, Ra = 20 nm, have revealed machining geometry errors and chemical mechanical SD caused by the CMP slurry. The elastic modulus (E) and hardness (H) of AlN and those of yttrium (Y) particles were discretely clarified using localized nanoindentation technique. The results showed that the CMP machining SD fatally affected the AlN/Y boundary strength and resulted to errors in the first contact points between the indenter and the sample. In addition to SD, the micro scale viscoelasticity phenomena of AlN in indentation caused peculiarities at peak loads in the load vs. depth plots. Under these circumstances, the values of E and H measured using Oliver and Pharr's method are in fact underestimated; E = 400 GPa and H = 20 GPa for AlN particles, 300 GPa and 17 GPa for Y particles and 500 GPa and 16 GPa for AlN/Y interface, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.