Abstract

The effective removal of water on the gas diffusion layer (GDL) surface and low flow channel resistance are essential for the water management of proton exchange membrane fuel cells (PEMFCs). In this paper, a 3D two-phase volume of fluid (VOF) model is used to compare and analyze the influence of different GDL surface microstructures on the liquid hydrodynamic behavior and optimize the design of the sine wave microstructure. The results show that the surface microstructure of the GDL has a more significant impact on the water removal and flow resistance coefficient in the flow channel, and the sine wave microstructure has substantial advantages. The sine wave peak and period significantly influence the water removal and flow resistance coefficient. As the peak increases, the average relative change rate and the flow resistance coefficient also increase; the influence of the period is opposite to the peak, and the continuous decrease of the period will accelerate the water removal in the flow channel. The sine wave's height and width have little impact on water removal and the flow resistance coefficient. When the sine wave A = 75 μm, T = 1.5, H = 15 μm, and L = 25 μm, good flow channel water removal and low resistance are achieved. This work has particular guiding significance for removing liquid water on the GDL surface and obtaining low flow channel resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call