Abstract

AbstractThree aluminium oxide materials and a HZSM‐5 zeolite were used as supports of bimetallic Pt‐WOx catalysts to establish structure–activity relationships in the glycerol hydrogenolysis reaction. The surface W density and the intimate contact between Pt and WOx were key parameters. Surface W density controls the formation of polytungstates, the only species able to produce the weak Brønsted acidity that is required to produce 1,3‐propanediol selectively. The comparison between the HZSM‐5 and the Al2O3 supports demonstrated that an increment of the medium Brønsted acidity is detrimental for the selective 1,3‐propanediol formation as it promotes reactions that yield 1‐propanol and propane. An increase of the dispersion of Pt on the Pt/WOx/Al2O3 catalysts led to higher glycerol conversions but also promoted the hydrogenolysis routes that lead to 1,2‐ and 1,3‐propanediol similarly. On the contrary, an increase of the Pt metal content favoured the hydrogenolysis route that leads to 1,3‐propanediol significantly. A more intimate contact between Pt and WOx promoted the hydrogenation of the intermediate carbocation, formed and stabilised on a polytungstate active site, into 1,3‐propanediol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.