Abstract
In this study, Copper Indium Gallium Selenide (CIGS) thin films were successfully sputtered from a single quaternary target onto soda lime glass substrates. The effect of the incident angle of target atoms and sputter temperature on the properties of the films were examined using various techniques. It was found that a higher incident angle of target atoms resulted in a columnar microstructure, while a lower angle produced a solid film. The columnar structure showed improved optical absorption compared to the solid film. The sputter temperature had a greater effect on the crystalline properties of the films, with all films except those sputtered at room temperature showing polycrystalline formation. The films displayed a chalcopyrite structure and acceptable band gaps in the range of 1.1-1.3 eV, regardless of the incident angle and sputter temperature. These results indicate that the optical properties of CIGS thin films can be improved by a small increase in the incident angle of target atoms, without adversely affecting the structural and crystalline properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.