Abstract

To investigate the effects of the oval hole on the strength and the failure mechanisms of rock materials, a series of uniaxial and biaxial compression numerical simulations were carried out using the combined finite-discrete element method (FDEM). Based on the numerical simulation results, the effects of dip angle (β), major–minor ratio (ω) and position of the oval hole on rock strength characteristics crack initiation and development process and final failure modes were analysed in detail. The numerical simulation results indicate that: (1) Under uniaxial compression, the ultimate failure modes of rock containing oval holes can be mainly classified into single inclined plane shear failure, X-shaped tensile-shear composite failure and Y-shaped tensile-shear composite failure. Under biaxial compression, the ultimate failure mode is single-inclined plane shear failure dominated by shear cracks. Whether it is uniaxial compression or biaxial compression, the crack initiation position of the main fracture surface is near the end of the major axis of the oval hole. (2) Under uniaxial compression, the axial stress–strain curve of rock containing the oval hole is smooth before and after the peak, but under biaxial compression, there is obvious fluctuation in the post-peak stage due to crack initiation and propagation. In both uniaxial and biaxial compression, the pre-peak elastic stage of the axial stress–strain curve of the rock containing the oval hole is significantly shortened and the peak stress is significantly reduced compared with the intact rock, which indicates that the bearing capacity of the rock is seriously reduced by the existence of oval hole. (3) When the position and major–minor axis ratio of the oval hole remain unchanged, the uniaxial compressive strength and biaxial compressive strength increase with the increase of the dip angle of the oval hole. When the position and dip angle of the oval hole remain unchanged, the uniaxial compressive strength and biaxial compressive strength decrease with the increase of the major–minor axis ratio of the oval hole. (4) At different dip angles, the brittleness index Bi of rock containing oval holes decreases with the increase of confining pressure, and the brittleness degree shows a gradual weakening trend. At the same time, when the dip angle increases, the decreasing amplitude of brittleness index Bi decreases with the increase of confining pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.